博客
关于我
764. Largest Plus Sign
阅读量:429 次
发布时间:2019-03-06

本文共 4014 字,大约阅读时间需要 13 分钟。

In a 2D grid from (0, 0) to (N-1, N-1), every cell contains a 1, except those cells in the given list mines which are 0. What is the largest axis-aligned plus sign of 1s contained in the grid? Return the order of the plus sign. If there is none, return 0.

An "axis-aligned plus sign of 1s of order k" has some center grid[x][y] = 1 along with 4 arms of length k-1 going up, down, left, and right, and made of 1s. This is demonstrated in the diagrams below. Note that there could be 0s or 1s beyond the arms of the plus sign, only the relevant area of the plus sign is checked for 1s.

 

Examples of Axis-Aligned Plus Signs of Order k:

Order 1:000010000Order 2:0000000100011100010000000Order 3:0000000000100000010000111110000100000010000000000

 

Example 1:

Input: N = 5, mines = [[4, 2]]Output: 2Explanation:1111111111111111111111011In the above grid, the largest plus sign can only be order 2.  One of them is marked in bold.

 

Example 2:

Input: N = 2, mines = []Output: 1Explanation:There is no plus sign of order 2, but there is of order 1.

 

Example 3:

Input: N = 1, mines = [[0, 0]]Output: 0Explanation:There is no plus sign, so return 0.

 

Note:

  1. N will be an integer in the range [1, 500].
  2. mines will have length at most 5000.
  3. mines[i] will be length 2 and consist of integers in the range [0, N-1].
  4. (Additionally, programs submitted in C, C++, or C# will be judged with a slightly smaller time limit.)

 

Approach #1: Math. [Java]

class Solution {    public int orderOfLargestPlusSign(int N, int[][] mines) {        int[][] grid = new int[N][N];        for (int i = 0; i < N; ++i)            Arrays.fill(grid[i], N);                for (int[] m : mines)             grid[m[0]][m[1]] = 0;                for (int i = 0; i < N; ++i) {            for (int j = 0, k = N-1, l = 0, r = 0, u = 0, d = 0; j < N && k >= 0; ++j, --k) {                grid[i][j] = Math.min(grid[i][j], l = (grid[i][j] == 0) ? 0 : l + 1);                grid[i][k] = Math.min(grid[i][k], r = (grid[i][k] == 0) ? 0 : r + 1);                grid[j][i] = Math.min(grid[j][i], u = (grid[j][i] == 0) ? 0 : u + 1);                grid[k][i] = Math.min(grid[k][i], d = (grid[k][i] == 0) ? 0 : d + 1);            }        }                int ans = 0;                for (int i = 0; i < N; ++i) {            for (int j = 0; j < N; ++j) {                ans = Math.max(ans, grid[i][j]);            }        }                return ans;    }}

  

Analysis:

Algorithms: 

For each position (i,j) of the grid matrix, we try to extend in each of the four directions (left, right, up, down) as long as possible, then take the minimum length of 1's out of the four directions as the order of the largest axis-aligned plus sign centered at position (i, j).

 

Optimizations:

Mormally we would need a total of five matrices to make the above idea work -- one matrix for the grid itself and four more matrices for each of the four directions. However, these five matrices can be combined into one using two simple tricks:

1. For each position (i, j), we are only concerned with the minimum length of 1's out of the four directions. This implies we may combine the four matrices into one by only keeping tracking of the minimum length.

2. For each position (i, j), the order of the largest axis-aligned plus sign centered at it will be 0 if and only if grid[i][j] = 0. This implies we may further combine the grid matrix with the one obtained above.

 

Implementations:

1. Create an N-by-N matrix grid, with all elements initialized with value N.

2. Reset those elements to 0 whose positions are in the mines list.

3. For each position (i, j), find the maximum length of 1's in each of the four directions and set grid[i][j] to the minimum of these four lengths. Note that there is a simple recurrence relation the maximum length of 1's at current position with previous position for each of the four directions (labeled as l, r, u, d).

4. Loop through the grid matrix and choose the maximum element which will be the largest axis-aligned plus sign of 1's contained in the grid.

 

 

转载地址:http://futuz.baihongyu.com/

你可能感兴趣的文章
MySQL高级-MySQL并发参数调整
查看>>
MySQL高级-视图
查看>>
MySQL:判断逗号分隔的字符串中是否包含某个字符串
查看>>
Nacos在双击startup.cmd启动时提示:Unable to start embedded Tomcat
查看>>
Nacos安装教程(非常详细)从零基础入门到精通,看完这一篇就够了
查看>>
Nacos配置中心集群原理及源码分析
查看>>
nacos配置自动刷新源码解析
查看>>
Nacos集群搭建
查看>>
nacos集群搭建
查看>>
Navicat for MySQL 查看BLOB字段内容
查看>>
Neo4j电影关系图Cypher
查看>>
Neo4j的安装与使用
查看>>
Neo4j(2):环境搭建
查看>>
Neo私链
查看>>
nessus快速安装使用指南(非常详细)零基础入门到精通,收藏这一篇就够了
查看>>
Nessus漏洞扫描教程之配置Nessus
查看>>
Nest.js 6.0.0 正式版发布,基于 TypeScript 的 Node.js 框架
查看>>
nestJS学习
查看>>
NetApp凭借领先的混合云数据与服务把握数字化转型机遇
查看>>
NetBeans IDE8.0需要JDK1.7及以上版本
查看>>