博客
关于我
764. Largest Plus Sign
阅读量:427 次
发布时间:2019-03-06

本文共 4014 字,大约阅读时间需要 13 分钟。

In a 2D grid from (0, 0) to (N-1, N-1), every cell contains a 1, except those cells in the given list mines which are 0. What is the largest axis-aligned plus sign of 1s contained in the grid? Return the order of the plus sign. If there is none, return 0.

An "axis-aligned plus sign of 1s of order k" has some center grid[x][y] = 1 along with 4 arms of length k-1 going up, down, left, and right, and made of 1s. This is demonstrated in the diagrams below. Note that there could be 0s or 1s beyond the arms of the plus sign, only the relevant area of the plus sign is checked for 1s.

 

Examples of Axis-Aligned Plus Signs of Order k:

Order 1:000010000Order 2:0000000100011100010000000Order 3:0000000000100000010000111110000100000010000000000

 

Example 1:

Input: N = 5, mines = [[4, 2]]Output: 2Explanation:1111111111111111111111011In the above grid, the largest plus sign can only be order 2.  One of them is marked in bold.

 

Example 2:

Input: N = 2, mines = []Output: 1Explanation:There is no plus sign of order 2, but there is of order 1.

 

Example 3:

Input: N = 1, mines = [[0, 0]]Output: 0Explanation:There is no plus sign, so return 0.

 

Note:

  1. N will be an integer in the range [1, 500].
  2. mines will have length at most 5000.
  3. mines[i] will be length 2 and consist of integers in the range [0, N-1].
  4. (Additionally, programs submitted in C, C++, or C# will be judged with a slightly smaller time limit.)

 

Approach #1: Math. [Java]

class Solution {    public int orderOfLargestPlusSign(int N, int[][] mines) {        int[][] grid = new int[N][N];        for (int i = 0; i < N; ++i)            Arrays.fill(grid[i], N);                for (int[] m : mines)             grid[m[0]][m[1]] = 0;                for (int i = 0; i < N; ++i) {            for (int j = 0, k = N-1, l = 0, r = 0, u = 0, d = 0; j < N && k >= 0; ++j, --k) {                grid[i][j] = Math.min(grid[i][j], l = (grid[i][j] == 0) ? 0 : l + 1);                grid[i][k] = Math.min(grid[i][k], r = (grid[i][k] == 0) ? 0 : r + 1);                grid[j][i] = Math.min(grid[j][i], u = (grid[j][i] == 0) ? 0 : u + 1);                grid[k][i] = Math.min(grid[k][i], d = (grid[k][i] == 0) ? 0 : d + 1);            }        }                int ans = 0;                for (int i = 0; i < N; ++i) {            for (int j = 0; j < N; ++j) {                ans = Math.max(ans, grid[i][j]);            }        }                return ans;    }}

  

Analysis:

Algorithms: 

For each position (i,j) of the grid matrix, we try to extend in each of the four directions (left, right, up, down) as long as possible, then take the minimum length of 1's out of the four directions as the order of the largest axis-aligned plus sign centered at position (i, j).

 

Optimizations:

Mormally we would need a total of five matrices to make the above idea work -- one matrix for the grid itself and four more matrices for each of the four directions. However, these five matrices can be combined into one using two simple tricks:

1. For each position (i, j), we are only concerned with the minimum length of 1's out of the four directions. This implies we may combine the four matrices into one by only keeping tracking of the minimum length.

2. For each position (i, j), the order of the largest axis-aligned plus sign centered at it will be 0 if and only if grid[i][j] = 0. This implies we may further combine the grid matrix with the one obtained above.

 

Implementations:

1. Create an N-by-N matrix grid, with all elements initialized with value N.

2. Reset those elements to 0 whose positions are in the mines list.

3. For each position (i, j), find the maximum length of 1's in each of the four directions and set grid[i][j] to the minimum of these four lengths. Note that there is a simple recurrence relation the maximum length of 1's at current position with previous position for each of the four directions (labeled as l, r, u, d).

4. Loop through the grid matrix and choose the maximum element which will be the largest axis-aligned plus sign of 1's contained in the grid.

 

 

转载地址:http://futuz.baihongyu.com/

你可能感兴趣的文章
mysql中对于数据库的基本操作
查看>>
Mysql中常用函数的使用示例
查看>>
MySql中怎样使用case-when实现判断查询结果返回
查看>>
Mysql中怎样使用update更新某列的数据减去指定值
查看>>
Mysql中怎样设置指定ip远程访问连接
查看>>
mysql中数据表的基本操作很难嘛,由这个实验来带你从头走一遍
查看>>
Mysql中文乱码问题完美解决方案
查看>>
mysql中的 +号 和 CONCAT(str1,str2,...)
查看>>
Mysql中的 IFNULL 函数的详解
查看>>
mysql中的collate关键字是什么意思?
查看>>
MySql中的concat()相关函数
查看>>
mysql中的concat函数,concat_ws函数,concat_group函数之间的区别
查看>>
MySQL中的count函数
查看>>
MySQL中的DB、DBMS、SQL
查看>>
MySQL中的DECIMAL类型:MYSQL_TYPE_DECIMAL与MYSQL_TYPE_NEWDECIMAL详解
查看>>
MySQL中的GROUP_CONCAT()函数详解与实战应用
查看>>
MySQL中的IO问题分析与优化
查看>>
MySQL中的ON DUPLICATE KEY UPDATE详解与应用
查看>>
mysql中的rbs,SharePoint RBS:即使启用了RBS,内容数据库也在不断增长
查看>>
mysql中的undo log、redo log 、binlog大致概要
查看>>